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Abstract—A new smartphone application for pulse 

photoplethysmography (PPG) recording is validated for a 

depression assessment protocol, consisting of four stages that 

includes recordings of movement-related tasks, talking-related 

tasks, and stillness. The separation of these stages allows to 

evaluate the agreement between the PPG acquired using the 

smartphone camera and a commercial pulse oximeter, used as 

reference, in different conditions. Several time-domain and 

frequency-domain heart rate variability (HRV) metrics have 

been studied. Results suggest a strong agreement during stillness 

phases (r ≥ 0.96 (p < 0.05) for all the HRV metrics), as well as a 

moderate downgrade during movement and talking. The 

agreement is also different between low-frequency related 

metrics (r ≥ 0.92 (p < 0.05)) and high-frequency related metrics 

(r < 0.78 (p < 0.05)). The overestimation of the high-frequency 

component of the HRV may be a limitation for smartphone PPG 

in depression monitoring. 
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I.  INTRODUCTION 

Pulse photoplethysmography (PPG) signals acquired from 
smartphone cameras have been investigated in a variety of 
applications, such as glucose level classification [1], vascular 
aging prediction [2], biometric authentication [3], and stress 
assessment [4]. Its usefulness in the fields of medicine, 
wellness, and sports, together with the fact that it can be 
obtained in a non-invasive manner, has made this signal an 
important object of study. Furthermore, PPG signal can be 
recorded by the built-in hardware of smartphones (flashlight 
and camera), and the ubiquity of these devices makes them 
very interesting in some applications. However, the quality of 
smartphone-camera-acquired PPG (SCPPG) signals is lower 
than the quality of signals obtained with conventional pulse 
photoplethysmographs. Movements, together with changes in 
finger pressure on the camera, are the main causes of artifacts. 

Therefore, their use for different applications must be validated 
within each scenario. 

In this work, the validity of SCPPG is investigated during a 
depression assessment protocol that aims to induce stress in the 
subjects. The physiological response to stress has been shown 
to be different in depressed patients from in healthy subjects, 
which can be monitored by pulse rate variability (PRV) [5] and 
morphology-derived metrics [6]. 

II. DATASET AND METHODS 

A. Dataset 

10 healthy Caucasian subjects (age mean±std: 39±11; 4 
women) underwent a depression assessment protocol (see 
Table I) consisting of: i) 5 minutes of basal state; ii) a Trail 
Making Test (TMT); iii) a Stroop Test (ST); iv) and 5 minutes 
of recovery. Both the TMT and the ST are stress-inducing tasks 
and were performed in a tablet. 

During the basal stage, subjects were instructed by a guided 
relaxation audio. Afterwards, they performed a TMT, 
consisting of a first page of random positioned numbers that 
they must follow in ascending order using the index finger of 
their dominant hand and without raising the hand from the 
tablet. A second page is formed by numbers and letters, which 
must be followed alternating numbers and letters (1-A-2-B-3-
C, and so on). The ST consisted of three pages. The first is 
formed by the words “red”, “green” and “blue” in a random 
order and black ink that subjects had to read. The second page 
is formed by colors (red, green, and blue) that subjects had to 
name. The third is formed by the same words, written with an 
ink that do not correspond to the word. Subjects had to name 
the color of the ink instead of the word written. Finally, a 
recovery stage consisted in a not guided relaxation right after 
the ST. 



TABLE I.  STAGES OF THE PROTOCOL 

Stage Duration Type of activity 

Basal 5 minutes Stillness 
TMT Until end Movement 
ST Until end Talking 
Recovery 5 minutes Stillness 

 

The subjects were seated and instructed to limit their 
movements during the entire protocol, and to hold the 
smartphone (Xiaomi Pocophone F1, China) with their non-
dominant hand while they covered the camera with the index 
finger. The camera layout in this device allows holding the 
smartphone in a comfortable position while not directly 
touching the flashlight, which can produce unpleasant heat in 
long recordings. Instead, the flashlight is at the right side of the 
camera at approximately 5mm distance (Fig. 1). 

 

 
Fig. 1. Camera layout of the Xiaomi Pocophone F1 

  

The flashlight was on during the recordings, and both the 
autofocus and autoexposure functions locked. This step is 
critical because these functions would cause non-physiological 
oscillations in the acquired SCPPG signal. These oscillations 
usually have a frequency similar to that of the pulses and can 
lead to confusing them. A Medicom system (Medicom MTD, 
Russia) was used simultaneously to record a conventional PPG 
signal in the ring finger of the same hand, for reference 
purposes. 

The smartphone application used was self-developed for 
PPG recording by using Flutter (Google LCC., USA). The 
application processes the camera feed –with a resolution of 
320x240 pixels, 24 frames per second, and RGB codification– 
by summing the values of the green component of each frame, 
thus obtaining a signal proportional to the intensity of the 
image. This signal is approximately –frame rate is dependent of 
the load of the operative system– sampled at 24 Hz. This signal 
is then upsampled using cubic splines at 250 Hz, matching the 
reference sample rate. Interpolation and further processing 
were performed offline by using MATLAB (MathWorks, 
USA). 

B. Pulse detection and processing 

Pulses were detected using the adaptative threshold 
algorithm described in [7] for each subject and protocol stage. 
This algorithm obtains the event series (tk), i.e., the timestamps 
of pulse occurrences. 

SCPPG signals are frequently affected by motion artifacts, 
producing both false positives and false negatives in the event 
series. Thus, before any PRV further analysis, these errors must 
be detected and corrected. First, pulse-to-pulse interval series 
were computed using the interval function dIF(tk), defined as 

 

               (1) 

 

Each event occurring at time tk is represented by a unit 
impulse function δ(t-tk) scaled by the length of the preceding 
interval. False positives produce an abrupt shortening of this 
scaling due to the introduction of an additional pulse between 
two actual pulses. A moving median of 30 samples is used to 
detect these outliers. The moving median produces an expected 
pulse-to-pulse interval (EPPI) at each tk: 

    

 (2) 

 

The interval at tk is considered as a false positive if 
dIF(tk) < (0.7xEPPI(tk)). These false positives are deleted from 
the tk series and dIF(tk) is computed again. On the other hand, 
the interval at tk is considered as a false negative if 
dIF(tk) > (1.3xEPPI(tk)). The treatment of false negatives was 
not the same for all the studied PRV metrics based on the 
results of [8], and it is detailed in Section II-C.  

C. PRV metrics 

For each protocol stage and subject, five PRV metrics are 
computed: mean heart rate (MHR), standard deviation of 
normal-to-normal interval (SDNN), root mean square of 
successive differences (RMSSD), low frequency power (PLF) 
and high frequency power (PHF). 

The detected gaps in the tk series were filled by an 
algorithm described in [8] before PLF and PHF computation. 
Then, the instantaneous heart rate is computed at 4 Hz using 
the integral pulse frequency modulation (IPFM) model [9]. 
Power spectral density of the instantaneous heart rate is 
estimated using periodograms after detrending with a 4th-order 
Butterworth high-pass filter with cutoff frequency 0.04 Hz. 
Periodograms are estimated from 0 to 0.4 Hz using 210 points. 
Then, low-frequency and high-frequency powers are computed 
using trapezoidal numerical integration within the classic 
bands: 0.04 to 0.15 for the low-frequency component and 0.15 
to 0.4 for the high-frequency component. 

According to the results obtained in [8], gap filling after 
outlier removal is not convenient in the case of the time-
domain metrics (MHR, SDNN and RMSSD). Thus, these 
indices were computed from dIF(tk) after removal of outliers in 
the tk series, with no additional gap filling. 



Fig. 2. PPG signals. SCPPG in black, Reference (Medicom) in blue. 

TABLE II.   RELATIVE ERROR, PEARSON CORRELATION COEFFICIENT AND 
MEAN DIFFERENCE OF EACH METRIC AND PROTOCOL STAGE 

MHR Median εr (%) MAD εr (%) r # Outliers Δ (%) 

Basal 0.04 0.03 1.00 2 0.04 
TMT 0.28 0.15 1.00 1 0.17 
ST 0.08 0.05 1.00 2 0.03 
Recovery 0.08 0.04 1.00 3 0.00 
SDNN      
Basal 4.86 2.66 1.00 1 5.3 
TMT 9.32 5.38 0.88 2 4.4 
ST 6.78 3.72 0.99 1 6.2 
Recovery 4.36 2.70 1.00 3 4.0 
RMSSD      
Basal 39.17 30.15 0.96 3 25 
TMT 36.73 26.77 0.68 0 38 
ST 54.40 25.91 0.76 1 40 
Recovery 32.54 23.58 0.96 3 25 
PLF      
Basal 1.68 1.29 1.00 2 0.21 
TMT 4.97 3.46 1.00 4 1.2 
ST 4.00 2.30 1.00 2 -0.1 
Recovery 3.32 1.66 1.00 1 0.83 
PHF      
Basal 43.81 39.40 0.99 1 36 
TMT 28.47 23.84 0.91 2 12 
ST 44.18 27.91 0.98 3 25 
Recovery 54.83 37.04 1.00 3 30 

 

D. Statistical analysis 

PRV metrics obtained from smartphone PPG were 
compared to the Medicom system reference. Relative error (εr) 
is calculated as the absolute value of metric differences, 
normalized by the reference values: 

       

 (3) 

 

The median and median absolute deviation (MAD) of εr is 
shown, both expressed as a percentage. Correlation is tested 
with the Pearson correlation coefficient (r) with significance 
level α = 0.05. As it is strongly affected by outliers, cases with 
relative error greater than three times the median relative error 
have been removed before computing coefficients. In addition, 
the Bland-Alman’s mean difference (Δ) is shown, expressed in 
percentage. This value is useful to assess if differences are 
biased, as well as the sign of the bias. 

III. RESULTS 

Table II shows a summary of the relative errors, correlation 
coefficients, and mean difference of each metric and protocol 
stage. An example of SCPPG it is shown in Fig. 2. Pearson 
correlation obtained p < 0.05 for all the cases. All metrics 
obtained the best results in the basal stage, followed by 
recovery, ST, and TMT, both in terms of relative error and 
correlation. All the metrics obtained r ≥ 0.96 (p < 0.05) in the 
basal stage.  

MHR showed almost perfect agreement, with εr ≤ 0.28% 
and r = 1 (p < 0.05) for all stages. Both SDNN and PLF 
obtained errors lower than 9.32% and correlation coefficients 
over than 0.88. This contrasts with RMSSD and PHF results. 
RMSSD error ranges from 32.54% to 54.40%, while PHF error 
ranges from 28.47% to 54.83%. In addition, correlation 

coefficients are lower in comparison with other metrics, being 
r < 0.76 (p < 0.05) for RMSSD during the stress-inducing 
tasks, i.e., TMT and ST. 

Results showed a clear difference between the 
basal/recovery and ST/TMT stages of the protocol, both in 
terms of correlation and relative error. The worst case is 
RMSSD during the TMT, where r = 0.68 (p < 0.05). 



The number of outliers ranged from 1 to 4. The major 
number of outliers is found when computing frequency-domain 
metrics. Mean differences were positive in all the cases except 
for PLF during the ST. MAD of εr followed the same trends as 
the median εr. 

IV. DISCUSSION 

The application has demonstrated almost a perfect 
correlation with the reference during the basal stage. Subjects 
were instructed to restrict their movements during this phase, 
while during the stress-inducing tasks, ST, and TMT, they need 
to talk or move, respectively. Thus, it was expected a 
downgrade in the stress-inducing task agreement. However, 
this downgrade is negligible in the MHR case (εr ≤ 0.28%, 
r = 1), and it is low in SDNN (εr ≤ 9.32%, r ≥ 0.88) and PLF 

(εr ≤ 4.97%, r = 1). There is only a substantial downgrade both 
in RMSSD (ε ≤ 54.40%, r ≥ 0.68) and PHF (εr ≤ 54.83%, 
r ≥ 0.91). Recovery stage is the second best in terms εr and 
correlation. There are only slight differences with respect to the 
basal stage. Only the number of outliers increased significantly, 
especially for PHF. It is interesting to note also that correlation is 
lower during the TMT (movement-related task) than during the 
ST (talking-related task), as it suggests that movements of the 
dominant hand may produce non-negligible movements in the 
non-dominant hand. 

One important finding of this research is the fact that errors 
in low-frequency-related metrics (SDNN and PLF) are 
significantly smaller than those of the high-frequency-related 
metrics (RMSSD and PHF). The power of the high-frequency 
component of the PRV is overestimated by the smartphone 
PPG, as it can be seen in the mean difference of PHF (Δ ≥ 26) 
and RMSSD (Δ ≥ 30). 

Several subjects showed difficulties in standing still during 
the whole protocol. Movements ranged from small comfort 
adjustments or isolated hand spasms to continuous trembling. 
The last is, without any doubt, the most insidious case in this 
study, producing most of the outliers. While comfort 
adjustments and spams last for few seconds, trembling may 
affect the whole recording. Trembling can be absorbed by 
pulse oximeters, but it is transferred to the signal completely in 
the case of smartphone PPG, producing signals with apparently 
good quality. Pulses can be detected in these signals, but there 
are small shifts due to the trembling distortion. It seems 
reasonable that this trembling occurs within the high-frequency 
range of the PRV, thus affecting this component the most. On 
the other hand, small motion artifacts can produce bursts of 
missing data that can be corrected [8]. 

Overestimation of the high-frequency component is one of 
the main potential limitations of the smartphone PPG in 
depression assessment, as is one of the features with a best-
demonstrated relationship with this disorder [10]. However, the 
strong correlation found suggests that these metrics may be still 
useful, as HF-related metrics may still discriminate stress if 
their overestimation is consistent in the different stages. Further 
studies will be necessary to: i) verify the overestimation of HF 
in more subjects; and ii) test whether this overestimation 
influences depression assessment. 

V. CONCLUSION 

A smartphone application for PPG recording has been 
validated during a depression assessment protocol. Agreement 
with the reference is almost perfect when the subject is stood 
still and relaxed. Errors arise when the subject is performing 
stress-inducing tasks, especially during movement-related 
tasks, although agreement still high. Smartphone PPG 
overestimates the power of the high frequency component of 
the PRV, being a potential limitation for depression 
assessment. 
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